RHIC polarization: Run9,11,12 results; Run13 plans

W. Schmidke – BNL on behalf of the polarimetry group

RSC meeting 11.01.13

Results Runs 9 (100 GeV reanalyzed), 11 & 12:

- New feature: time dependent P(t), $R(t) \Rightarrow P_{SSA}(t)$
- Assessment of uncertainties
- summarized in document: https://wiki.bnl.gov/rhicspin/upload/6/68/Run91112_results.pdf

note: numbers given for uncertainties are relative $\sigma(P)/P$

Run13 plans:

- Steps to mitigate Run12 problems: RF pickup, target mortality
- New features

Polarimeters

p-carbon (pC) polarimeters (2 each RHIC ring):

- Measure mean P across beam, profile R = $(\sigma_{|}/\sigma_{|})^2$
 - ⇒ polarization for collisions e.g. for SSA P_{SSA}≈(1+½R)P
- Short (<1 min.) measurements, few % stat. uncert., few (~4) per fill
 ⇒ time evolution P(t), R(t)
- Measure asymmetry ϵ , P= ϵ /A_N
 - A_{N} not known a priori \Rightarrow normalize to H-jet P measurements

Polarized hydrogen jet (H-jet) polarimeter:

- Target polarization P_{jet} measured w/ Breit-Rabi polarimeter (BRP)
- Measure jet \uparrow/\downarrow , beam \uparrow/\downarrow asymmetries: $P_{\text{beam}} = (\epsilon_{\text{beam}}/\epsilon_{\text{jet}})P_{\text{jet}}$
 - ⇒ absolute polarization scale determined w.r.t. Breit-Rabi polar., P_{iet}
- Low rate, over entire fill stat. uncert. few %
 - ⇒ combine many (all available) fills to normalize pC/H-jet

New polar. results: P(t), R(t)

Now for each fill param.:

$$P(t) \approx P_0 - P' \cdot t \text{ (after } A_N \text{ determined } \mathbf{Y})$$

 $R(t) \approx R_0 + R' \cdot t$ (profile param.) • And for experiments:

$$P_{SSA}(t) \approx (1 + \frac{1}{2} R(t)) P(t)$$

= $P_{0.SSA} - P'_{SSA} \cdot t$

Important: not all physics data collected uniformly thru fills

• Nice data set, e.g. P' all fills:

fill 16750

Use: time dependent P(t)

- For a fill must have time dependence of luminosity L(t) describing:
 - beam current decay
 - turning on/off of relevant trigger, prescales
- The the mean polarization for this fill is lumi-weighted P_{SSA} (t):

$$\langle P_{SSA} \rangle = \frac{1}{\int dt L(t)} \int dt L(t) P(t)$$

= $P_{0,SSA} + \frac{\int dt \, t \, L(t)}{\int dt L(t)} P'_{SSA}$

pC/H-jet normalization $\Rightarrow A_N$

 H-jet measures beam intensity weighted mean polarization through fill:

$$\overline{P^{jet}} = \frac{\int dt I(t) P(t)}{\int dt I(t)}$$

In terms of the pC measured asymmetry ε(t) = ε₀ - ε'·t:
 I(t) from RHIC archive

$$\overline{\epsilon^{pC}} = \left(1 - \left(\frac{\epsilon'}{\epsilon_0}\right) \cdot \frac{\int dt \, tI(t)}{\int dt \, I(t)}\right) \epsilon_0$$

• Then over a set of fills determine:

$$A_N = \left\langle -rac{\overline{\epsilon^{pC}}}{\overline{P^{jet}}}
ight
angle_{ ext{fills}}$$

- We measure A_N for each pC polarimeter (4×) and period (year, energy)
- Then all pC measurements: $P = \epsilon/A_{N}$
- And: uncertainty on $A_{_{\rm N}}$ is a scale uncertainty on P

Uncertainty on A_N

e.g. pC/H-jet ratio for Y2U 2012 255 GeV fills, should be constant:

Fills 16567--16737, Analyzed Thu Sep 27 10:11:19 2012, Version 1805:1806M, dsmirnov

Entries	1527
Mean	1.665e+04
RMS	52.79
Underflow	0
Overflow	0
Integral	34.58
χ² / ndf	48.06 / 33
Prob	0.04373
p0	1.004 ± 0.016

stat. uncert. only: $\chi^2/NDOF > 1$

- Consider fill-to-fill systematics H-jet ⊕ pC
- Estimate: add in quadrature to stat. uncert. so $\chi^2/NDOF=1$
- For this set sys. uncert. = 5.6%
- All sets H-jet ⊕ pC syst. uncert.: ~ ½ of cases are zero: stat. dominated non-zero cases are 2.5-6.5%, almost all when known pC problems 6

Uncertainty on A_N

- Add so determined syst. uncert. (if any) to stat. uncertainties
- From pC/H-jet ratios with these inflated uncertainties redetermine A_N (P0 fit ⇒ uncertainty on A_N)
- Uncertainties A_N each pC polarimeter 1.1-2.2%
- With 2 pC measurements each ring: uncert. 0.8-1.3%
- The uncertainty on A_N from this fit includes uncertainties from the full data set:
 - H-jet statistics
 - H-jet fill-to-fill systematics
 - pC statistics
 - pC fill-to-fill systematics

Repeating:

- All pC measurements: $P = \epsilon/A_N$
- Uncertainty on A_N is a scale uncertainty on P

P scale uncertainty from H-jet

BRP:

- P_{beam} scale set by B-R polarimeter measurement of P_{jet}
- BRP measures atomic H in jet target
- Jet may have some contamination from H₂, not measured in BRP
- H₂ contamination measured in test bench in 2004;
 from long ago measurement estimate uncertainty 3%
 DOMINANT UNCERTAINTY ALL P MEASUREMENTS

Backgrounds:

- Backgrounds in H-jet measurement (e.g. inelastic pp \to X) can invalidate relation P_{beam} = $(\epsilon_{\rm beam}/\epsilon_{\rm jet})$ P_{jet}
- Upper limit on backgrounds ~1%; take as additional scale uncert.

Overall P scale uncert.

SSA:

- Polar. uncert. evaluated are for single beam i.e. for SSA (Profile correction P→P_{SSA} mentioned shortly)
- Contributions in quadrature:
 σ(A_N)⊕σ(BRP H₂ contamination)⊕σ(H-jet backgrounds)
- Result: all years, each ring $\sigma(P_{SSA})/P_{SSA} = 3.3-3.4\%$

DSA:

- To lowest order in profile parameter R: P_{DSA} ≈ P_{SSA,Blue}·P_{SSA,Yellow}
- The scale uncertainties from H-jet fully correlated between the two rings (same H-jet used both rings)
- Scale uncert. from A_N each ring uncorrelated
- Result: all years $\sigma(P_{DSA})/P_{DSA} = 6.5\%$

Entire / partial data sets

Scale uncertainties so evaluated include:

- All H-jet normalization scale uncert.
- All H-jet stat. uncert. (via A_N uncert.)
- All H-jet fill-to-fill syst. uncert.
- All pC stat. uncert.
- All pC fill-to-fill syst. uncert.

When using all or almost all of a data set (year, energy):

• That's it for $\sigma(P)/P$; we're pretty much done

When using fraction of a data set, say N fills:

- Fill-to-fill systematic uncertainties contribute ∝1/√N
- As N gets large contribution negligible compared to scale uncert.
- Fill-to-fill uncertainties evaluated:
 - pC systematics
 - systematics of profile correction P, $R \Rightarrow P_{SSA}$

pC fill-to-fill syst. uncert.

- For most fills have 2 P measures each ring: up/downstream pC polarim.
- They measure the same beam, should be same
- Here ratio Yel UP/DN for 2012 255 GeV:

Fills 16567--16737, Analyzed Thu Sep 27 10:11:19 2012, Version 1805:1806M, dsmirnov

Entries	42
Mean	1.664e+04
RMS	46.76
Underflow	0
Overflow	0
Integral	41.79
χ² / ndf	75.07 / 41
Prob	0.0009211
p0	1.001 ± 0.011

- Estimate syst. uncert.: again do the $\chi^2/NDOF=1$ thang
- pC fill-to-fill syst. uncert. 0-3.2%; non-zero usually known pC problems for N fills large, negligible w.r.t. scale uncert.
- Some overcounting of uncert. here (already in overall scale uncert.)
 → see summary document for details

Profile correction systematics

- Profile parameter R = $(\sigma_I/\sigma_P)^2$
- Measure R from P vs. Intensity (rate):

 $P(I) = P_{\text{max}} \cdot (I/I_{\text{max}})^{R}$

In terms the (fit) parameters P_{max} & R , mean P of a target sweep across beam is:

$$\langle P \rangle_{\text{fit}} = P_{\text{max}} / \sqrt{(1+R)} \approx P_{\text{max}} \cdot (1-\frac{1}{2}R)$$

 $P_{SSA} \approx \langle P \rangle_{sween} \cdot (1 + \frac{1}{2}R)$

13 21:24:35 2012. Analyzed Wed Jul 11 12:19:14 2012. Version 1787. dsmirnov

- ullet We measure directly (& use for results) sweep mean $\langle \mathsf{P} \rangle_{\scriptscriptstyle \mathsf{sweep}}$
- $_{\bullet}$ Comparing $\left\langle P\right\rangle _{\text{fit}}$ & $\left\langle P\right\rangle _{\text{sweep}}$ sheds light on precision of SSA correction

Profile correction systematics - RMS/mean of $(\langle P \rangle_{\text{fit}}/\langle P \rangle_{\text{sweep}})$ distributions (extra factor $\sqrt{2}$ in $\langle P \rangle_{\text{fit}}$ here):

- RMS/mean ~ 4.5-6.5% per measurement
- Each fill ~3 measurements × 2 polarimeters
 - ⇒ fill-to-fill profile correction uncert. 2.2%
- Again for N fills contributes ∞1/√N, negligible w.r.t. scale uncert.

Run13: RF pickup reduction

Run12 big problems with RF pickup noise in pC detectors

Major external source:
 YEL stochastic cooling pickup

• Steps to reduce:

- properly terminate feedthroughs

upgraded grounding/shielding
 pC preamp boxes on chamber

Run13: target lifetime improvement

- Run12 had high rate target mortality:
 entire target set replaced twice, entire maintenance days
- Run12 used thinnest possible 25 nm thick carbon targets
- Run13 will use 50 nm thick carbon targets, more robust
 - monitor rates closely, avoid DAQ buffer overflows (target speed)
- Observation: targets are non-conducting before use; targets that survive beam exposure are conducting
- Hypothesis: heating in beam changes structure (& conductivity)
- Will install some targets treated to become conductive: treated with intense flash lamp; annealed by current heating
- If available: install few graphene targets from outside firm
- Early RHIC operations: expose all targets to low current beam, anneal
- Installing video system to monitor all targets behavior, viability

Run13: long. segmented det.

- pC detectors usually segmented azimuthally
- Run13: each polar. pair of detectors segmented longitudinally (along beam):
- One such pair tested in Run12, promising results

Distribution of hits in strips gives info (fit to MC distribution):

- Centroid $\Rightarrow z_0$ target position along beam
- Width ⇒ L_{max}

 amount of target
 material traversed
 pC scattering→detector
 (width from multiple scattering)

⇒ monitor these parameters through sweep measurements >

target

 \times 1 mm strips

Run profile

- •Fits performed for 0.1 sec. bins
- Rate ~ position across beam:

- z₀ varies ~linearly in time
- Target sweep direction not perpendicular to beam axis, crosses beam at an angle

L_{max} ~ constant

Run profile

Hypothesis:

- Loose target, ~1.2 mm sway
- Attracted radially toward beam
- As it reaches radial center of beam it stays there, rate flat tops
- While at radial center of beam, other forces attract it toward -z, it moves ~1.3 mm along beam
- Reverse process as target drawn out other side of beam
- The long. segmented detectors provide useful info on target looseness, viability...
- Also spectacular when a target breaks...

Long term L_{max}

- L_{max} (material crossed)
 ~constant in sweep, but evolves over long term (fills):
- Effective thickness L_{max}
 some targets seems to increase with # exposures

Amount of material crossed can effect P measurement:

- detect fixed carbon E range
- loss by dE/dx ⇒ shift from scattered→detected carbon E
- changed A_N(E_{scat})
- With thicker targets Run13 larger L_{max} variations
- monitor and perhaps correct for

vs. time, target

Extras

Significance of P'=-dp/dt

• Histogram P'/σ(P'), all fill Runs 9-12:

